SUBSTITUENT EFFECT ON THE ACETOLYSIS OF 2-PHENYLETHYL TOSYLATE

Mizue Fujio, Kimito Funatsu, Mutsuo Goto, Yoji Seki, Masaaki Mishima, and Yuho Tsuno* Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Fukuoka 812, Japan

Abstract: The apparent substituent effect on the acetolysis of 2-arylethyl tosylates was analyzed as a sum of two linear substituent effect relationships for aryl-assisted and -unassisted processes. The effect on the former process satisfied the LArSR Eq. with a unique r value of 0.6.

In investigations of anchimerically assisted solvolyses, the effects of aryl substituents have played an important role as a measure of the significance of assistance.¹⁻³ Recently, we have reported⁴ that the substituent effect on the acetolysis of neophyl brosylates can be described by a unique r value of 0.56 in our LArSR Eq.⁵ $\log k/k_o = \rho(\sigma^0 + r\Delta \overline{\sigma}_p^+)$ (1)

This appreciably exalted r value was taken as evidence for a direct π -delocalization interaction between the aryl π -system and β -carbocation center, *i.e.*, a bridged structure, in the rate-determining transition state.^{5,6} While the r parameter is a sensitive measure of the resonance demands of varying systems, the results of LArSR analyses have led to the generalization that it shows little variation within a family of essentially the same mechanism and affords a unique value characteristic of the nature of the transition state of the system. It is therefore expected that the substituent effect on β -aryl assisted solvolyses can also be characterized by such a unique r value, contrary to the traditional σ^+ characterization.³ Accordingly, this investigation was undertaken in an attempt to define more precisely the substituent effect on the anchimerically assisted (Fk_A) processes of β -arylalkyl solvolysis systems.

In most of such β -arylalkyl solvolyses, the precise analysis of substituent effects on the assisted process suffers from the mechanistic complexity due to the concurring aryl-unassisted (k_s) pathway, which even becomes predominant with the deactivating compounds.¹⁻³ The acetolysis of β -arylethyl tosylates chosen for the present study is no exception, and the solvolysis rate k_t (= k_s + Fk_{\Delta}) does not satisfy any simple linear substituent effect relationships. A useful way of separating rates of assisted process has been exploited by Schleyer, et al.,² based on the assumption of Hammett-type relationships for respective pathways, practically observable in extreme cases, Fk_A>>k_s and k_s>>Fk_A.

$$\begin{split} \log(k_t^X/k_t^H) &= \rho_s \overline{\sigma}_s + \log(k_s^H/k_t^H) & \text{ for } k_s \text{ process } (k_s >> Fk_\Delta) \\ &= \rho_\Delta \overline{\sigma}_\Delta + \log(Fk_\Delta^H/k_t^H) & \text{ for } Fk_\Delta \text{ process } (Fk_\Delta >> k_s) \end{split}$$

While a reasonable Hammett correlation was in fact obtained for the k_s process,² data were not sufficient to define the correlation for the Fk_{Δ} process. Data for β -arylethyl solvolysis have now become available covering an extended range of substituents (Table 1) including disubstituted compounds which were found to be particularly effective for defining the r for the neophyl system.⁴

The substituent effect on the k_s process may be treated simply with σ^0 , since the process involves no direct π -interaction between the aryl and reaction site. This permits the evaluation of Fk_{Δ} values, and the substituent effect can be analyzed in terms of the LArSR Eq. (1). While a precise analysis can be achieved by the iterative least squares procedure,⁷ direct graphical examination appears to be important in order to understand the nature of the Fk_{Δ} substituent effects. For simplicity, taking r as the constant of the Fk_{Δ} processes, the apparent $\overline{\sigma}_{NP}$ values derived from neophyl acetolysis⁴ are used in Fig. 1 as a reference $\overline{\sigma}_{\Delta}$ set of an appropriate r, in comparison with the ordinary σ^+ (r = 1.0).

The key principle of the present analysis is that only with appropriate $\overline{\sigma}_s$ and $\overline{\sigma}_\Delta$ sets, will the apparent k_t plot result in a single monotonic curvature converging to the correlation lines at either activating or deactivating end. It should be noted that para π -acceptor as well as meta substituents can unequivocally define the non-linear k_t correlation in terms of standard σ^0 constants, since only para π -donors are susceptible to resonance demands, *i.e.*, to the r value, in electrophilic resonance reactions. The k_c correlation can be defined

Subst.	$10^{5}k_{t}^{X}(s^{-1})$	k ^X /k ^H	Subst.	$10^{5}k_{t}^{X}(s^{-1})$	k^{X}/k^{H}
p-OCH ₂ CH ₂ -m	133 ^a	102	p-Ph	1.903	1.45
p-MeO-m-Me	91.0 ^a	69.5	m-Me	1.62 ^b	1.28 ^c
p-MeO	43.4	33.2	Н	1.309	1.00
3,4,5-Me ₃	10.26	7.84	p-MeS-m-C1	1.196	0.914
2-Fluo.	7.00 ^b	5.51 ^C	p-F	1.186	0.906
p-PhO	6.86	5.24	p-C1	0.845 ^b	0.665 ^C
3,4-Me ₂	6.37	4.87	m - F	0.761 ^b	0.599 ^C
p-MeS	5.43	4.15	m - C 1	0.728 ^b	0.573 ^C
p-Me	3.892	2.97	m-CF _z	0.689 ^b	0.543 ^C
p-t-Bu	3.56	2.72	p-CF ₃	0.699 ^b	0.550 ^C
p-MeO-m-Cl	3.275	2.50	p-NO ₂	0.635 ^b	0.500 ^C
3,5-Me ₂	2.322	1.77	3,5-(CF ₃) ₂	0.584 ^b	0.460 ^C
			- 2	1 1H 1 0	7 10-5

Table 1. Acetolysis of β -Arylethyl Tosylates at 115.00^oC

a) Arrhenius extrapolation. b) Lit. values.² c) Based on $k^{H} = 1.27 \times 10^{-5} (s^{-1}).^{2}$

and

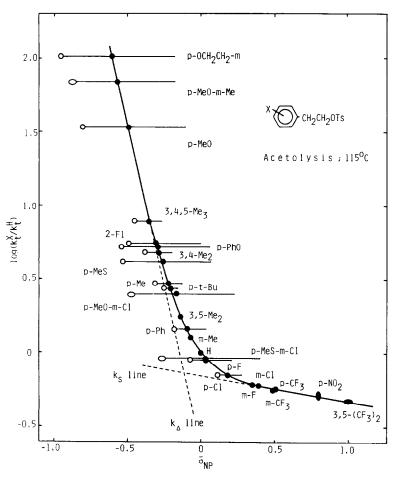


Fig. 1 The plot of log k_t^X/k_t^H against σ^+ and $\overline{\sigma}_{NP}$ constants.

unambiguously based upon deactivating substituents, giving a ρ_s value of -0.17. In contrast with the wide dispersion of σ^+ plots (open circles), the plots (closed circles) against $\overline{\sigma}_{NP}$ all collapse into a single smooth curve without any serious deviation. Activating substrates define fairly accurately the Fk_{Δ} line of $\rho_{\Delta} \cong -4$ bound smoothly to the k_t curve determined by r-independent substituents. In addition, the Fk_{Δ} and k_s correlation lines cross each other at the point 0.30 log-unit below the k_t line, as expected for k_s = Fk_{Δ} = k_t/2. No reasonable Fk_{Δ} correlation line appears to be drawn through σ^+ plots. Both correlations are contrasted sharply by the behavior of less activating strong π -donors, such as p-MeO-m-Cl and p-MeS-m-Cl derivatives.⁸ There is no doubt that the $\overline{\sigma}_{NP}$ of r = 0.56 is far more suitable than σ^+ (r = 1.00) for the Fk_{Δ} correlation. The best-fit r value does not appear to differ so significantly from that of $\overline{\sigma}_{NP}$. Now we can define the substituent effect on the Fk_{$\Delta} pathway$ in terms of this unique r value of about 0.6.^{7,8}</sub> Finally, it should be emphasized that the aryl-assisted process of phenylethyl acetolysis is a complex process involving significant return from the phenonium intermediate,⁹ in contrast with the neophyl solvolysis. Such a mechanistic complexity has often been the cause of disagreement concerning the deviation of r from unity against our LArSR concept of varying resonance demands.¹⁰ The apparent substituent effect on the phenylethyl Fk_{Δ} process might not be the intrinsic effect on the k_{Δ} ionization but a modified one associated with the substituent-change in F value. However, the same r value for both assisted processes is not in line with any argument based on a constant resonance demand r = 1.00. Further, accumulated data indicate that the F value is remarkably constant, independent of aryl substituents.⁹ The reduced r value of 0.6 must be inherent in the process of rate-determining ionization through a β -aryl-assisted transition state.

References and Notes

1) C.J.Lancelot, D.J.Cram, and P.v.R.Schlever, "Carbonium Ions," ed by G.A. Olah and P.v.R.Schleyer, Wiley-Interscience, New York (1972), Vol. 3, Chap. 27, p. 1347. 2) J.M.Harris, F.L.Schadt, P.v.R.Schleyer, and C.J.Lancelot, J.Am.Chem. Soc., 91, 7508 (1969); F.L.Schadt III, C.J.Lancelot, and P.v.R.Schleyer, ibid., 100, 228 (1978). 3) C.J.Lancelot and P.v.R.Schleyer, J.Am.Chem.Soc., 91, 4291 (1969); C.J.Lancelot, J.J.Harper, and P.v.R.Schleyer, ibid., 91, 4294 (1969); C.J.Lancelot and P.v.R.Schleyer, ibid., 91, 4296 (1969); C.J.Kim and H.C.Brown, ibid., 91, 4287, 4289 (1969); H.C.Brown, C.J.Kim, C.J.Lancelot, and P.v.R. Schlever, ibid., 92, 5244 (1970); H.C.Brown and C.J.Kim, ibid., 93, 5765 (1971). 4) Y.Tsuno, K.Funatsu, Y.Maeda, M.Mishima, and M.Fujio, Tetrahedron Lett., 23, 2879 (1982). 5) Y.Yukawa and Y.Tsuno, Bull.Chem.Soc.Jpn., 32, 971 (1959); Y. Yukawa, Y.Tsuno, and M.Sawada, ibid., 39, 2274 (1966). 6) T.Imamoto, S.G.Kim, Y.Tsuno, and Y.Yukawa, Bull.Chem.Soc.Jpn., 44, 2776 (1971); Y.Tsuno, Y.Kusuyama, M.Sawada, T.Fujii, and Y.Yukawa, ibid., 48, 3337 (1975). 7) The iterative least squares calculation gives the best-fit Fk_{Δ} correlation, $\log(Fk_{\Delta}^{X}/Fk_{\Delta}^{H}) = -3.709(\sigma^{0} + 0.633\Delta\overline{\sigma}_{R}^{+})$ with $\log(Fk_{\Delta}^{H}) = -5.359$, and the k_s correlation, $\log(k_{s}^{X}/k_{\Delta}^{H}) = -0.162\sigma^{0}$ with $\log(k_{s}^{H}) = -5.060$. 8) The σ^{+} used were experimental values, -0.48 for p-MeO-m-Cl and -0.26 for p-MeS-m-Cl (to be published) and the $\Delta \overline{\sigma}_{\rm p}^+$ values were given to be equal to those of p-substituents. 9) J.L.Coke, F.L.McFarlane, M.C. Mourning, and M.G.Jones, J.Am.Chem.Soc., 91, 1154 (1969); M.G.Jones and J.L.Coke, ibid., 91, 4284 (1969); Y.Tsuno, M.Fujio, Y.Seki, M.Mishima, and S.G.Kim, Nippon Kagaku Kaishi, 1977, 1673; M.Fujio, Y.Seki, M.Mishima, and Y.Tsuno, Mem.Fac.Sci., Kyushu Univ., Ser. C, 11, 119 (1978); Y.Seki, M.Fujio, M.Mishima, and Y.Tsuno, ibid., 12, 197 (1980); M.Fujio, Y.Seki, R.Fujiyama, M.Mishima, and Y.Tsuno, ibid., <u>13</u>, 71 (1981). 10) C.D.Johnson, J.Org.Chem., <u>43</u>, 1814 (1978).

(Received in Japan 21 February 1983)